
1 2 Two-Dimensional Shape Coding 
Joern Ostermann and Anthony Vetro 

C O N T E N T S 

12.1 Introduction 299 
12.1.1 Shape Coding Overview 301 
12.1.2 Related Work 301 

12.1.2.1 Implicit Shape Coding 301 
12.1.2.2 Bitmap-Based Shape Coding 302 
12.1.2.3 Contour-Based Shape Coding 302 
12.1.2.4 MPEG-4 Shape Coding 303 

12.1.3 Chapter Organization 303 
12.2 MPEG-4 Shape Coding Tools 303 

12.2.1 Shape Representation 304 
12.2.2 Binary Shape Coding 304 

12.2.2.1 Intra-Mode 305 
12.2.2.2 Inter-Mode 306 
12.2.2.3 Evaluation Criteria for Coding Efficiency 307 

12.2.3 Gray-Scale Shape Coding 307 
12.2.3.1 Objects with Constant Transparency 307 
12.2.3.2 Objects with Arbitrary Transparency 307 

12.2.4 Texture Coding of Boundary Blocks 307 
12.2.5 Video Coder Architecture 308 

12.3 Codec Optimization 308 
12.3.1 Preprocessing 309 
12.3.2 Rate-Distortion Models 310 
12.3.3 Rate Control 313 

12.3.3.1 Buffering Policy 313 
12.3.3.2 Bit Allocation 314 

12.3.4 Error Control 314 
12.3.5 Post-Processing 315 

12.3.5.1 Composition and Alpha Blending 315 
12.3.5.2 Error Concealment 315 

12.4 Applications 316 
12.4.1 Surveillance 316 
12.4.2 Interactive TV 318 

12.5 Concluding Remarks 318 
References 319 

12.1 I N T R O D U C T I O N 

With video being a ubiquitous part of modern multimedia communications, new functionalities 
in addition to the compression as provided by conventional video coding standards like H.261. 
MPEG-l. H.262. MPEG-2, H.263, and H.264 are required for new applications. Applications like 

299 



3 0 0 DOCUMENT AND IMAGE COMPRESSION 

content-based storage and retrieval have to allow access to video data based on object descriptions, 
where objects are described by texture, shape, and motion. Studio and television postproduction 
applications require editing of video content with objects represented by texture and shape. For 
collaborative scene visualization like augmented reality, we need to place video objects into the scene. 
Mobile multimedia applications require content-based interactivity and content-based scalability in 
order to allocate limited bit rate or limited terminal resources to fit the individual needs. Security 
applications benefit from content-based scalability as well. All these applications share one common 
requirement: video content has to be easily accessible on an object basis. MPEG-4 Visual enables 
this functionality. The main part of this chapter describes MPEG-4 shape coding, the content-based 
interactivity enabling tool. 

Given the application requirements, video objects have to be described not only by texture, 
but also by shape. The importance of shape for video objects has been realized early on by the 
broadcasting and movie industries employing the so-called chroma-keying technique, which uses 
a predefined color in the video signal to define the background. Coding algorithms like object-
based analysis-synthesis coding (OBASC) [30 | use shape as a parameter in addition to texture and 
motion for describing moving video objects. Second-generation image coding segments an image 
into regions and describes each region by texture and shape [28]. The purpose of using shape was to 
achieve better subjective picture quality, increased coding efficiency as well as an object-based video 
representation. 

MPEG-4 Visual is the first international standard allowing the transmission of arbitrarily shaped 
video objects (VO) [21 J. Each frame of a VO is called video object plane (VOP) consisting of 
shape and texture information as well as optional motion information. Following an object-based 
approach, MPEG-4 Visual transmits texture, motion, and shape information of one VO within one 
bitstream. The bitstreams of several VOs and accompanying composition information can be mul­
tiplexed such that the decoder receives all the information to decode the VOs and arrange them 
into a video scene; the composition of multiple video objects is illustrated in Figure 12.1. Alter­
natively, objects may be transmitted in different streams according to a scene description [11,44]. 
This results in a new dimension of interactivity and flexibility for standardized video and multimedia 
applications. 

Two types of VOs are distinguished. For opaque objects, binary shape information is transmitted. 
Transparent objects are described by gray-scale a-maps defining the outline as well as the transparency 
variation of an object. 

FIGURE 12.1 CONTENT-BASED SCALABILITY REQUIRES INDIVIDUAL OBJECTS TO BE TRANSMITTED AND COMPOSITED AT THE 
DECODER. DEPENDING ON RESOURCES, ONLY SOME OF THE OBJECTS MIGHT BE COMPOSITED TO THE SCENE AND PRESENTED AT 
THE TERMINAL. 

TWO-DIMENSIONAL SHAPE CODING 3 0 1 

Input 
s h a p e P r e p r o c e s s i n g 

Output 
s h a p e 

Binary 
s h a p e 
c o d e r 

a - m a p 
c o d e r 

Mux 

Noise 

P o s t p r o c e s s i n g 
S h a p e 

d e c o d e r 

FIGURE 12 .2 Processing steps for shape coding considering binar\ and gray-scale or-maps. 

1 2 . 1 . 1 SHAPE CODING OVERVIEW 

Figure 12.2 shows the processing steps related to shape coding. They apply to object-based coding 
systems that transmit shape information only, as well as to systems that transmit texture for the 
objects. The optional shape preprocessing may remove noise from the shape signal and simplify the 
shapes such that it can be coded more efficiently. Preprocessing usually depends on the shape coding 
algorithm employed. 

For transparent objects, the preprocessed shape information is separated into a binary shape 
defining the pels belonging to the object and a gray-scale information defining the transparency of 
each pel of the object. For binary shapes and gray-scale shape information the binary shape coder 
codes the shape using lossless or lossy shape coding algorithms. In the case of transparent objects, 
an a-map coder codes the transparency information for the coded binary shape. The bitstreams get 
multiplexed, transmitted, and decoded at the decoder. The optional postprocessing algorithm provides 
error concealment and boundary smoothing. 

The receiver decodes the VOs and composes them into a scene as defined by the composition 
information [11,44]. Typically, several VOs are overlayed on a background. For some applications, 
a complete background image does not exist. Foreground VOs are used to cover these holes. Often 
they exactly fit into holes of the background. In case of lossily coded shape, a pixel originally 
defined as opaque may be changed to transparent, thereb) resulting in undefined pixels in the scene. 
Therefore, lossy shape coding of the background needs to be coordinated with lossy shape coding 
of the foreground VOs. If objects in a scene are not coded at the same temporal rate and a full 
rectangular background does not exist, then it is very likely that undefined pixels in the scene will 
occur. Postprocessing in the decoder may extend objects to avoid these holes. 

1 2 . 1 . 2 RELATED WORK 

There are three classes of binary shape coders. A bitmap-baaed coder encodes for each pel whether 
it belongs to the object or not. A cw??o(<r-based coder encodes the outline of the object. In order to 
retrieve the bitmap of the object shape, the contour is filled with the object label. In the case where 
there is also texture transmitted with the shape information, an implicit shape coder, often referred 
to as chroma keying [7]. can be used, where the shape information is derived from the texture using 
a predefined color for defining the outside of an object. Similar to texture coding, binary shapes can 
be coded in a lossless or lossy fashion. 

12 .1 .2 .1 Implicit Shape Coding 

This class of coding defines a specific pixel value or a range of pixel values as the background of 
the image. The remaining pels are part of the object. An implicit shape coder is also specified in 


