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Abstract

In this article we present the integration of 3-D shape knowldge into a variational
model for level set based image segmentation and trackingivén a 3-D surface model
of an object that is visible in the image of one or multiple caeras calibrated to the same
world coordinate system, the object contour extracted by th segmentation method is
applied to estimate the 3-D pose parameters of the object. 88-versa, the surface model
projected to the image plane helps in a top-down manner to imgve the extraction of
the contour. While common alternative segmentation apprazes, which integrate 2-D
shape knowledge, face the problem that an object can look yeti erently from various
viewpoints, a 3-D free form model ensures that for each vielwd model can t the data
in the image very well. Moreover, one additionally solves & higher level problem
of determining the object pose in 3-D space. Due to the variahal formulation, the
approach clearly states all model assumptions in a single exgy functional that is
locally minimized by our method. Its performance is demonsited by experiments
with a monocular and a stereo camera system.



1 Introduction

Image segmentation and pose estimation are two principal@slems in computer vision.
Segmentation determines the location and shape of objectsthe image plane, thereby
performing a signi cant abstraction step from the raw pixeldata to object regions. It is
well-known and easy to imagine that higher level vision praéms get much simpler and
more reliable, if the area in the image occupied by the objeit known. However, image
segmentation is a di cult task and often fails for general inages. The main reason for
these failures is a violation of the model assumptions impes for image segmentation.
Due to noise, texture, shading, occlusion, or simply becaushe appearance of two
objects is locally nearly the same, the image gray value orlopis rarely su cient to
clearly separate objects from their background. A possibtemedy is the supplement of
additional information, such as texture and motion inform#&on, which greatly extends
the number of situations where image segmentation can suede[33, 8]. Nevertheless,
image segmentation is a too high level task for purely imagkiven methods to succeed.
For segmenting general images, prior object knowledge andasic understanding of
the scene are necessary to reliably determine the object molaries. For this reason,
image segmentation in the sense of object contour extraatican only work generally
in the bundle with other high level vision tasks.

One such task is pose estimation, in particular 2D-3D posetiesation. Given a learned
3-D object model, the task of pose estimation is to estimate agid motion which
ts the 3-D object model to some 2-D image data [26], i.e., oneasically searches for
the optimum six pose parameters { three for the object's traslation and three for its
rotation. To this end, the matching of features known from tle 3-D object model to
corresponding 2-D features in the image is necessary.

There are several possible features that could be matchedtlween 2-D and 3-D, the
object can be modelled in various ways, and there a di erentgssibilities to determine
the pose from the matched features. Therefore, it is not sutiping that many works
on 2D-3D pose estimation can be found in the literature [4352 Pioneering work was
done by Lowe [31, 32] and Grimson [26]. Their methods have beextended to fully
projective formulations [1], the use of Placker lines hasden suggested [49], and pure
rigid bodies have been extended to kinematic chains [4]. 18] a neural network based
approach has been proposed. The used features for matchimgge from lines [2], to
viewpoint dependent point features including vertices, janctions, cusps, three-tangent
junctions, edge in ections, etc. [29], or multi-part curvesegments [55]. Also real-time
tracking of articulated objects has been achieved by usingmtours [23].

The strategy followed in this paper is based on a matching beéen the 3-D object
surface and the object contour in the image [44]. In detail,evtry to nd a rigid motion
that minimizes the error between the projected object surte and the region encircled
by the contour in the image. Since the common role of image segntation is exactly to
extract the contour of objects in the image, this shows the gsible connection between
2D-3D pose estimation and image segmentation.

So image segmentation can serve the pose estimation taskt yat about the infor-
mation ow in opposite direction? It has already been statecdbove that purely image
driven segmentation methods are not able to extract the obgé contour in general sit-



uations. Hence, in some recent segmentation approachespp-D shape information
has been integrated in order to impose additional constramthat force the contour to
a desirable solution. An early example can be found in [30] ete shape information
in uences the evolution of an active contour model. This bas concept has been ex-
tended and modied in [17, 47, 14, 20, 41, 19, 16] and providasgood framework for
the sound integration of 2-D shape knowledge in segmentatiprocesses.

However, the real world has three spatial dimensions. Thigdt is responsible for an
inherent shortcoming of 2-D shape models: they cannot excdescribe the image of
an object from arbitrary views. As a remedy to this problem, lte di erent views of an
object can be expressed by a statistical model [15]. The pees paper instead embarks
on the strategy to replace the 2-D shape model by a 3-D surfaoedel, thus directly
respecting the 3-D nature of the object.

For the integration of 3-D shape information in a 2-D segmeation process, the object
model has to be projected onto the image plane, and for thisipose in the scene has to
be known. At this point, one realizes again the connection lveeen image segmentation
and pose estimation, yet now the connection points into thetloer direction: a pose
estimate is needed in order to integrate the surface model.

Notice that a pose estimation problem appears in the case offl2shape knowledge as
well. Also there, it is necessary to estimate the translatig rotation, and scaling of
the shape, before it can constrain the contour in the image.hls is either achieved by
explicit estimation of the pose parameters [47], or by an apgpriate normalization of
the shapes [16]. Extensions to perspective transformat®of 2-D shapes have recently
been proposed in [41]. However, all these e orts for estimag the 2-D pose only aim
on the use of shape knowledge in order to yield improved segnaions. The 2-D pose
estimates do not allow a location of the object in the real 3-vorld but only in the
2-D projection of this world. In contrast, the 2D-3D pose esnhation employed in our
model not only helps to determine the object contour but alsaims on the location of
the object in the scene.

Bringing image segmentation and 2D-3D pose estimation taher by formulating a joint
energy functional is therefore a contribution that can be garded from two perspectives.
From the segmentation perspective, our approach extends theds that integrate 2-D
prior knowledge to 3-D shape models with all its consequeisce-rom the perspective of
pose tracking, our method integrates the feature extractiostep into the pose estimation
process, i.e., there is a back-coupling of the pose resultathhelps to improve the
extracted features, in our case the object silhouette.

Moreover, the method suggested in this paper is to our knowdge the rst variational
approach to pose estimation. Variational methods are veryoommon in image analysis
and belong to the best performing techniques, e.g., in imagegmentation [8, 19],
motion estimation [6], image denoising [48], or 3-D recomsttion [42, 53]. This is also
because they provide a sound theoretical framework with athodel assumptions clearly
stated in a single energy functional and numerical schemdsat provide at least a local
optimum of this energy.

In the method described in this paper, the energy functionaiontains both the object
contour and the pose parameters as unknowns. Since the optim pose parameters de-
pend on the contour and vice-versa, the minimization is dori®y alternating both image
segmentation and pose estimation in an iterative manner, austrated in Figure 1.
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Figure 1: Basic idea: iterating segmentation and pose esttion. The projected pose
result is used as a-priori knowledge for segmentation, thertour as matching feature
for pose estimation.

This paper comprises and extends an earlier work presented @conference [7]. In com-
parison to this introduction of the basic idea, the present gper contains a much more
detailed description of the approach, integrates a con dexe measure in the coupling of
segmentation and pose estimation, and demonstrates the geality of the method by
means of additional experiments that rule out many alternate techniques for solving
the task.

Paper organization. The next section contains a detailed review of the level seaibed
image segmentation model used in our approach. It further@tudes the introduction of
a local region statistics model that aims on the handling ohhomogeneous objects and
backgrounds. Section 3 then explains the concept of 2D-3D g®estimation including
the contour based pose estimation technique needed for oypaoach. In Section 4
we then present our idea to combine image segmentation andd3pose estimation in
a joint energy functional. Experiments in Section 5 demonsdte the performance of
the proposed technique and illustrate the conceptual di eence to other methods. The
paper is concluded by a short summary in Section 6.

2 Image Segmentation

2.1 Level Set Formulation

Our method is based on variational image segmentation witlevel sets [22, 37, 11, 34,
38, 12], and in particular on the method described in [8, 5]. dvel set formulations
of the image segmentation problem have several advantagesdomparison to other
contour extraction methods. One of these advantages is therwvenient embedding of
a 1-D curve into a 2-D, image-like structure. This is very ugel for the interaction
between the constraints that are imposed on the contour itdeand those constraints
that act on the regions separated by the contour. A further achntage of level set
segmentation is the capability of these methods to model tojpgical changes of the
regions. This can become very important, for instance, whethe object is partially



occluded by another object and is hence split into two partd-inally, level set methods
easily allow the integration of further constraints like pror shape knowledge. Many
recent methods that integrate shape knowledge in image segmtation are thus based
on level set methods. In our approach we benet from all thesadvantages. On the
other hand, the most prominent drawback of level set methodsiamely the di culty
to extend it to segmentations with more than two regions inveed, is not important
for the present method. This is because we only need a spliigj of the image into the
object, the pose of which we want to estimate, and its backguad. Thus a two-region
segmentation is fully su cient.

In level set based segmentation methods, a level set funetio 2 7! R splits the
image domain into two regions ; and ,, with ( x) > 0ifx2 j;and (x) <O
if x 2 5. The zero-level line thus marks the boundary between both gens, i.e., it
represents the object contour that is sought to be extracted

As an optimality criterion for the contour extraction, three constraints are imposed:
1. the data within each region should be as similar as possbl
2. the data between regions should be as dissimilar as possib
3. the contour dividing the regions should be as short as pdie

These model assumptions can be expressed by the followingrgy functional [56, 13]:
Z Z
E() = H()log p.+(1 H())log p, dx+ jr H() jdx  (2.1)

where > 0 is a weighting parameter between the third and the two otheronstraints,
and H (s) is a regularized Heaviside function with lilm;  H(s) =0, limg; H(s) =1,
and H(0) = 0:5 (e.g. the error function). It indicates to which region a piel belongs.
Minimizing the rst two terms maximizes the total a-posteriori probability given the
probability densitiesp; andp, of ;and »,i.e., pixels are assigned to the most probable
region according to the Bayes rule. The third term minimizethe length of the contour.

Energy minimization can be performed according to the graelint descent equation

P1 . r
@= HY) log=+ div — (2.2)
P2 Ir
where HY(s) is the derivative of H (s) with respect to its argument (so in our case a
Gaussian). Applying this evolution equation to some initiization °, the contour
converges to a (local) minimum for the numerical evolutiongrametert ! 1 . This is
illustrated in Figure 2.

2.2 Region Statistics

A very important factor for the quality of the contour extraction process is the way
how the probability densitiesp; and p, are modelled. This model decides on what is
considered as similar or dissimilar. There are several cbes on which image cues to



use for the density model, for instance, gray value, colorxture [50, 39, 45], or motion
[8, 40, 18]. Moreover, there are various possibilities how tmodel the probability
densities given these image cues, e.g., a Gaussian densith wed standard deviation
[13], a full Gaussian density [46], a generalized Laplaci§?i’], or nonparametric Parzen
estimates [28, 45, 8.

For the segmentation here, we use the texture feature spaceoposed in [9], which
yields M =5 feature channelsl; for gray scale images, andl = 7 channels if color is
available. The color channels are considered in the CIELABolor space. The texture
features described in [9] contain basically the same infoation as the frequently used
responses of Gabor lters, yet the representation of this farmation is less redundant,
so 4 feature channels substitute 12-64 Gabor responses.

The probability densities of the M feature channels are assumed to be independent,
thus the total probability density comes down to

Y
p= P (1) i=1;2 (2.3)
j=1

Though assuming independence of the probability densitiesonly an approximation of
the true densities, it keeps the density model tractable. Tik has to be seen particularly
with regard to the fact that the densities have to be estimat# by means of a limited
amount of image data given.

Estimating both the probability densities p; and the region contour works according
to the expectation-maximization principlg[21, 35]. Having the level set function initial-
ized with some patrtitioning, the probability densities canbe approximated within the

regions, for instance, by a Gaussian density estimate

1 S ii 2
pi (s) / ’92—7 exp (2721) (2.4)
]

de ned by the means ; and standard deviations j in each regioni 2 f 1,2g and
channelj 2 f1;::;Mg. This model contains only 2 parameters that have to be

Figure 2: lllustration of the curve evolution according to 2.2). From Left to Right:
Curve aftert =0, t=1,t=2,t=3,t=4,and t = 20. Bottom Row: Level set
function .



Figure 3: Synthetic image where regions have the same mear buerent standard
deviations. From Left to Right: Initialization. Result with the piecewise constant
model. Result with the Gaussian model. Only the gray level farmation has been used
for this illustration.

estimated within a region. In contrast to the Chan-Vese modewhere only the means
play a role [13], it has the advantage that the discriminatin performance is independent
of the contrast of a feature channel [5]. This means in partitar that there is no need

for explicitly weighting the di erent feature channels. Futhermore, regions can also be
distinguished if they only di er in their standard deviations and not in their means; see
Figure 3.
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Figure 4: lllustration of how the Gaussian probability dengies of the two regions are
adapted due to the evolution of the contour in Figure 3.Left: Probability densities

p; and p, estimated with the initial contour. Right: Probability densities p; and p,

estimated with the nal contour. It can be seen that the metha@ maximizes the distance
between the densities. The very small di erence at the begimg is already su cient

to separate the regions.

With an approximation of the probability densities within the regions, one can com-
pute an update on the contour according to (2.2), leading to &urther update of the
probability densities, and so on. Figure 4 illustrates the ect of this iterative process
on the probability density estimates. It can be seen that thenethod maximizes the
distance between the densities. Since the process converge a local minimum, the
initialization matters. In order to attenuate the dependemry on the initialization, one
can apply a continuation method in a coarse-to- ne manner [3
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Figure 5: Motivation for using local statistics. Left: In the global scope it is not clear
whether the nose should be assigned to the zebra region or ke tbackground (note the
dark shadow). Right: When considering a local neighborhood, the assignment ofeth
nose becomes unambiguous.

2.3 Local Region Statistics

The above-mentioned statistical model is globalmodel for the probability density of

each region. Especially in complicated scenes with many ebis in the background,
shadows, and highlights, such a model may not be su cient foseparating the object
region from the background. In such cases, di erences bewvethe regions are often
only locally visible. A global statistical model looses tlsi local information and can thus
loose the capability to separate the regions. We propose bax remedy to this problem
by suggestinglocal probability density estimates, where the densities may cinge with

the position x in the image

. 2
s | P cexp 10N (2.5)
i

i (X) 2 i (x)?
The parameters j (x) and j (X) are computed in a local Gaussian neighborhoadd
around x by:

R
K( x0()d

R
i(x)= —R K ( B X)(1; () i (x))?d
YT K (0 xd '

ij (X) = — ) K ( x)d (2.6)

where denotes the standard deviation of the Gaussian window. In der to obtain
reliable estimates for the parameters; (x) and j (x), it is recommended to choose
6.

It should not be concealed that two major drawbacks come algnwith these local
statistics. Firstly, they demand a considerably larger amant of computation time than
global estimates. Secondly, they induce more local minima the energy functional.
The latter drawback is less severe for the approach discudse the present paper, as
the model uses object knowledge which constrains the subséfpossible segmentations
and provides a reasonable initialization for the contour. e rst drawback, however,
persists. Although one only has to compute the densities \in the narrow band along
the region boundary, the contour evolution using local stadtics is about one order of
magnitude slower than the same evolution with global statiis.



Figure 6: The pose scenario: the aim is to estimate the poBe t.

3 2D-3D Pose Estimation

2D-3D pose estimation [26] means to estimate a rigid body mon which maps a 3D
object model to an image of a calibrated camera, see Fig. 6. @@nding on the camera
model being used (orthographic, perspective), the objeatpresentation (e.g. point sets,
line sets, contours, surface patches) and image data (e.@rmers, line segments, silhou-
ettes) many di erent algorithms can be developed for di erat numerical estimation
techniques (e.g. Kalman lters, gradient descent approaels, SVD decompositions),
see [43, 25] for overviews. In this section, we summarize ioasotations and previously
developed point-based, contour-based, and surface-bageabe estimation algorithms,
see [43].

3.1 Foundations

We start with mathematic concepts that are needed for the pesproblem, such as
Placker lines and twists to model rigid body motions. Then pint-based and contour-
based pose estimation algorithms are introduced.

3.1.1 Plscker lines

A 3-D line L can be represented in Placker form [43]. A Placker linke = (n;m) is
given as (unit) vectorn and momentm = x n for a given pointx on the line. An
advantage of this representation is its uniqueness (apantoin possible sign changes).
This can be seen as follows: Let{;x, 2 L with x; 6 x,. We choose 2 R with
X2 = n + X;. Then we have (note:n n =0)

X n =(n+x3) n = (n n)+Xx; nNn=x; n: (3.7)
Moreover, the incidence of a poink on a lineL =(n;m) can be expressed as
x2L , X n m=0: (3.8)

This follows by a similar algebraic operation as in Equatio.7.
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Figure 7: Comparison of a 3-D point with a 3-D line.

As a third advantage, Equation 3.8 provides us with a distarec measure. LetL =
(n;m), with m = v n as shown in Figure 7, andk = x; + X,, with x 2 L and
X2 ? n. Then we have (note:xx; n=m, X, ? n andknk=1)

kx n mk = kx; n+X, n mk=kx, nk= kxyk: (3.9

This means thatx n m in Equation 3.8 results in a (rotated) perpendicular error
vector to line L . This distance measure and its minimization is used for posstimation.

3.1.2 Rigid motions

Every 3-D rigid motion can be represented by a 4 4 matrix

_ Rz 3 t31
Moo= P (3.10)

for a given rotation matrix R3 3 2 SO(3), with SO(n) := fR 2 R" " : RR" =

| ; det(R)=+1 g, and a translation vectort; ;. By using homogeneous coordinates,
a point x can be transformed by matrix multiplication x°= Mx . In fact, M is an
element of the one-parametric Lie grousE(3), known as the group of direct a ne
isometries. A main result of Lie theory is, that to each Lie gup there exists a Lie
algebra which can be found in its tangential space by derivan and evaluation at
its origin; see [24, 36] for more details. The correspondinige algebra to SE(3) is
se3) = f(v;!)jv 2 R%! 2 so(3)g, with so(3) = fA 2 R® 3jA = ATg. The elements
in s&(3) are calledtwists, which can be denoted as

0 1
R Ny o Jd5 I,
= 0. 0 ,witht =@ 1, 0 1;A: (3.11)
3 1 d, 1y 0
A twist is sometimes written as vector
= (Va2 v Vo va): (3.12)

It contains six parameters and can be scaled to for a unit vector ! . To reconstruct a
group actionM 2 SE(3) from a given twist, the exponential function exp(”) = M 2

SE(3) can be used. The parameter 2 R corresponds to the motion velocity, i.e., the
rotation velocity and pitch. For varying , the motion can be identi ed as screw motion

10



around an axis in space. This is proven by Chasles Theorem ][3®m 1830. Indeed,
evaluating the exponential of a matrix is not trivial, but it can be calculated e ciently
by using the Rodriguez formula [36],

exp(") = eXOFi(Sr\) (I exp®" ))(!1 v)+ Il Ty for! 60 (3.13)

with exp( ") computed by calculating
exp(M) = 1 +2sin()+42%1 cos()); (3.14)

i.e., only sine and cosine functions of real numbers need te bomputed.

3.1.3 Point-based pose estimation

For point-based pose estimation we combine the results of thoprevious subsections
and introduce a gradient descent method. The idea is to recstnuct an image point
to a projection ray L = (n;m) and to claim incidence of the transformed 3-D poink
with the 3-D ray:

exp( )x)3 1 n m=0: (3.15)

Indeed, x is a homogeneous 4-D vector, and after multiplication withite 4 4 matrix
exp( ") we neglect the homogeneous component (which is 1) to evaieahe cross

product with n. We now linearize the equation by using exp() = i:o X 14 "

ki
with | as identity matrix. This results in

(+ )31 n m=0 (3.16)

and can be reordered into an equation of the forlA = b. Collecting a set of such
equations (each is of rank two) leads to an overdeterminedstgm of equations, which
can be solved using, for example, the Householder algorithithe Rodriguez formula
can be applied to reconstruct the group actiorM from the estimated twist . The
group action is then applied to the 3-D points and the processs iterated until the
gradient descent approach reaches a steady state.

Note that the projection rays only need to be reconstructednze, and can be recon-
structed from orthographic, projective, or even catadioptc cameras. The algorithm is
very fast (e.g., it needs 2 ms on a standard Linux PC for 100 paicorrespondences).
In [43] extensions to point-plane, line-plane constraintqeiations and kinematic chains
are presented using Cli ord algebra [51].

In the described setting, the extension to multiple views istraightforward: we assume
N images which are calibrated with respect to the same world aalinate system and are
triggered. For each camera the system matrices; : :: Ay and solution vectorsb; :: : by

simultaneously, i.e., the spatial errors from all involvedamera views are minimized.
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3.1.4 Pose estimation of free-form contours

We assume a one-parametric closed curve in 3-D space,

C() = (FYnf2 )yt ). (3.17)
which is represented by a nite set of contour points
cn) = f(fXn);f2(n);f3n)" :n=0:::M 1g: (3.18)

The main idea is to interpret a one-parametric 3-D closed cue as three separate 1-D
signals that represent the projections of the curve along #&x, y, and z axis, respectively.

Since the curve is assumed to be closed, the signals are pdidand can be analyzed
by applying a 1-D discrete Fourier transform (1D-DFT). The nverse discrete Fourier
transform (1D-IDFT) enables us to reconstruct low-pass appximations of each signal.
Subject to the sampling theorem, this leads to the represeation of the one-parametric

3-D curveC( ) as

xoX
C()= pK’ exp

m=1 k= N
The parameter m represents each dimension and the vectors' are phase vectors
obtained from the 1D-DFT acting on dimensionm. Using only a low-index subset of
the Fourier coe cients results in a low-pass approximationof the object model which
can be used to regularize the pose estimation algorithm.
For pose estimation we combine this parametric representah within an iterated closest
point (ICP) algorithm [54] in order to determine point correspondences between the
image silhouette and the 3-D contour.

N +1| : (3.19)

Figure 8: Pose results during iterated ICP-cycles and inaised number of used Fourier
descriptors.

The algorithm for pose estimation of free-form contours caists of iterating the follow-
ing steps:

(a) Reconstruct the projection rays from image points.

(b) Estimate the nearest point on the 3-D contour to each proj ection ray.

(c) Estimate the contour pose by using this point/line corre spondence set.
(d) Goto (b).

For (a) , we determine from the calibration the optical centec and the image point in
the world coordinate system. This is used to de ne the 3-D RBbker line, see section
3.1.1. For(b) we use Equation 3.7 and sample along the contour. Pgxt) is described
in Section 3.1.3. Figure 8 shows an example for iterations. h& algorithm usually
converges within 20 iterations and we need 40ms on a standdtohux PC (1GHz) to
estimate the pose of a free-form contour.

12



2 4 9 all (51)

T
T

T
1

Figure 9: A sequence of di erent low-pass approximations ah object model consisting
of three free-form surface patches.

3.1.5 Pose estimation of free-form surfaces

We assume a two-parametric surface [10] of the form
F(uo2) = (FY(C 0 25f%C 0 2% ¢ )7 (3.20)

de ned by three functionsf'( 1; ,) : R?> ! R acting on the base vectors. The idea
behind a two-parametric surface is to assume two independgrarameters ; and »
which sample the 2-D surface in 3-D space. In fact, we are ugim mesh model of
the object [10]. For a nite number of sampled points '(ny;ny) (N 2 [ Ny;NiJ;ny 2

a 2-D discrete Fourier transform (2D-DFT) and then apply an mverse 2-D discrete
Fourier transform (2D-IDFT) for each base vector separatgl Subject to a proper
sampling, the surface can therefore be written as a seriegparsion of the form

0 1
X1 X Fl(ke; ko)

@ F2(ky;ko) A exp 22Nk1+ii exp 22Nk2+ii with
ki= Nikz= N2 F3(k1;k2) 1 2

1 Re X
(2N1+1)(2N2+1) ni= Ninz= N2

2k
1N i exp 2k 2Nz i
2N, +1 2N, +1

F( 1 2)

FJ (k1;ka) fi(ng;ny)

(3.21)

exp

Figure 9 shows approximation levels of a tea pot consistind a handle, container and
spout.

For pose estimation we assume a properly extracted silhoteetof an object in a given
image. There is a need to express tangentiality between therface and the recon-
structed projection rays, and there is also a need to expreaglistance measure within
our description. For this requirement, we decided to use th&-D rim of the surface
model which is tangential with respect to the camera coordate system. Here our
tracking assumption comes into account: we project the 3-Dudace with its initial
pose onto a virtual image. Then the 2-D contour is calculatednd from the image
contour the 3-D rim of the surface model is reconstructed. Tget the 3-D rim, there is
a need to get from the image of a node point to its 3-D coordines. This is done with
the help of a look-up tableF, see Figure 10. First we assume a me€i{i;j ) ! (X;y;2)
which gives the 3-D coordinates of the surface node for thedwample parametersi{j ).
This mesh is projected with the projection matrix into a virtual imagel. The model

13



C:(p->ky2)

Fro>i)

Figure 10: To determine the 3-D position of a 2-D image node, ald F is used as
look-up table, which stores the relation between pixels anithe 3-D mesh. C(F (x;Yy))
gives the 3-D coordinates of a node at pixel positiorx(y) in the image.

Figure 11: Pose results of the tea pot.

is projected in the virtual image with connecting line segnmés between points on the
surface nodes and the nodes in another gray-scale value. Skirtual image is used as
a look-up table: we can detect the 3-D surface point for a ginesurface node on the
image with the help of a 2-D eld F and function C, since C(F (x;y)) yields the 3-D
coordinates of the node's image pointx{y). To obtain the 3-D rim points we use a
contour algorithm which follows the image of the mesh modeya recursive procedure.
Then the nodes of the mesh model are collected, from which tberresponding 3-D rim
is calculated with the help ofF. The rim model is then applied on our contour-based
pose estimation algorithm, see Section 3.1.4. Since the ass of the surface model
are changing during the ICP-cycles, a new rim will be estimatl after each cycle. Pose
results of the silhouette-based pose estimation algorithare shown in Figure 11.

In order to deal with larger motions during pose tracking we se a sampling method that
applies the surface based pose estimation algorithm for @rent neighboring starting
positions. From all results we then choose the one with the mimum error between
the extracted silhouette and the projected surface mesh.
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4 Coupling Segmentation and Pose Estimation

The pose estimation method relies on the correctly extraaecontour of the object in
the image. Although the method can deal with some errors in écontour, it yields
bad results as soon as the erroneous parts outnumber the @mt parts. Therefore, the
applicability of the pose estimation algorithm stands anddils with the capabilities of
the contour extraction method, which must be able, e.g., toehl with texture.

On the other hand, the segmentation task can be simpli ed a tpif the solutions are
restricted to be close to a given prior shape. In many cases$iig prevents the object
region to capture parts of the image that do not belong to the lgect. Thus, using
the known object shape from the 3-D model for segmentation drcorrecting its pose
by the contour is bene cial both for the nal contour and the estimated pose. In the
following, we introduce a way how such a joint evolution of ta contour and the pose
can be realized in a variational setting.

4.1 Joint Energy Functional

In order to couple pose estimation and image segmentation one single optimiza-
tion problem, the energy functional for image segmentatiom (2.1) is extended by an

additional term thaZt integrates the object model: 5

E(; )= H()log p.+(1 H())log p, dx+ jr H() jdx
Z
+ o ))Zdx:
| {z }
Shape
The quadratic error measure in the shape term has been progdsin the context of
2-D shape priors, e.g. in [47]. The prioro 2 ! R depends on the sought 3-D pose
and is assumed to be represented by the signed distance fuowct In our case this
means, o(x) yields the distance ofx to the silhouette of the projected object surface.

(4.22)

Assumed the pose parameters are known, o is constructed as follows: letXg
denote the set of pointsX on the object surface. Projection of the transformed points
exp( )Xs into the image plane yields the sexg of all 2-D points x on the image plane
that correspond to a 3-D point on the surface model

x=Pexp( )X; 8X 2 Xs (4.23)

where P denotes a projection with known camera parameters. The ldveet function
o can then be constructed fromxs by setting

1 ifx2Xg

1 otherwise (4.24)

To(X) =

and applying the distance transform, i.e.,

o= distO) if ~o(x) >0

dist(x) otherwise (4.25)

where dist(x) denotes the distance ok to the zero-level line of ™.
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4.2 Energy Minimization

Minimizing (4.22) with respect to the contour leads to the gradient descent equation

@ = HY logP+ dv T +2 (o) ): (426

P2 Ir

The shape term in this evolution equation pushes the contouowards the contour of
the projected object model. This ensures that the contour oaot deviate too much

from the modelled shape. The weighting parameter 0 thereby determines just how
far the contour can deviate from the prior. If the correct pos parameters were known,
a large value of would ensure that the contour converges correctly to the spa of the

object model.

However, the pose parameters amot known but are free variables and supposed to be
optimized together with the contour. Thus the shape term in4.22) not only draws the
contour towards the projected object model, but also drawshe object model towards
the contour, or more precisely, makes the object model to ahge its pose such that the
projected object , resembles the contour . This optimization of the pose pararaters
is achieved by the method described in Section 3. Due to thesthnce transform,
the squared error measure in (4.22) is the error measure mmmized by the least squares
approach in Section 3: the minimum squared residual over g@lbint-line correspondences
is obtained by solving the overdetermined linear systelA = b in Section 3.1.3.

In order to minimize the total energy, we suggest an iteratey approach: keeping the
contour Xxed, the optimum pose parameters  are determined as described in Sec-
tion 3 and yield the silhouette o of the object model. Retaining in the opposite way
the pose parameters, (4.26) determines an update on the cout. Both iteration steps
thereby minimize the distance between and ,. While the pose estimation method
draws o towards , thereby respecting the constraint of a rigid motion, (4.26) in re-
turn draws the curve towards o, thereby respecting the data in the image. The
weighting parameter steers the in uence of the object model versus the image data
A small gives the contour much freedom to evolve, enabling the pose tollow. If
the object region can be clearly separated from the backgmd, choosing small is
therefore bene cial. On the other hand, if the contour is digsacted by background
clutter, the shape information keeps the contour from runmg too far away from the
object. In our experiments we have chosenin the area of 005.

4.3 A Measure of Con dence for the Extracted Contour

The reliability of the extracted contour may vary a lot alongthe curve. Although the
partitioning ensures a closed contour, which is in contragb edge detection techniques,
the separability of the object and the background region calme considerably reduced in
some areas. This happens in particular in locations wheredlshape prior contradicts
the local region statistics, e.g., due to occlusions. We ttefore propose to measure
the con dence of the extracted contour and to consider thisnformation during pose
estimation.
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Figure 12: From left to right:  (a) Initialization. (b) Segmentation result with object
knowledge. (c) Pose result. (d) Segmentation result withowbject knowledge.

The sought con dence at a certain pointx can be expressed by the probability that the
point has been assigned to the correct region. This probaibjl reads

R R
pu(x) K (X) p(x) K (x)d
p(x) p(x)

whereK is the Gaussian kernel from Section 2.3. If a pixel assigneal tegion ; also
ts well to region 5, i.e.,,p1  po, the precise location of the contour will be ambiguous
and the con dence will be around 0.5. Obversely, if a pixel agned to ; does not t
to region ,,i.e.,p1 P2, the contour location will be de nite and the con dence will
be close to 1. If a pixel is assigned to the wrong region accimgl to the statistics { this
can happen due to contradictions with the object prior or thdength constraint { the
con dence will be even smaller than 0.5.

Due to slightly blurred edges, pixels directly on the contauoften have a quite low
con dence, although the separability of the regions in thewrounding area is high.
Therefore, it is reasonable to take also pixels from the néigorhood into account. This
can be achieved by a simple convolution with a Gaussian ketre

cx)=(K ©o)(x) (4.28)

d
H(( X))+

&(x) = (1 HC( X)) (4.27)

where we set =1:5.

The con dence measure(x) can easily be integrated in the pose estimation procedure.
Every equation in the linear system stemming from a correspdence of a 3-D pointX
with the 2-D point x is weighted byc(x). This way, point matches in highly con dent
areas obtain more in uence on the solution than matches stemng from ambiguous
points on the contour.

5 Experiments

We investigated the performance of our joint contour extra®mn and pose estimation
method in a couple of experiments. Fig. 12 rst demonstratethe general advantage of
integrating object knowledge into the segmentation proces Without object knowledge,
parts of the tea box are missing as they better t to the backgsund. The object prior
can constrain the contour to the vicinity of the projected olpect model derived from
those parts of the contour that can be extracted reliably. Tis basic concept is also
the key issue of approaches that use 2-D shape knowledge. M8tD shape knowledge,
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Figure 13: Top row: Input images for frames 51, 189 and 450 of an image sequence
containing 560 frames.Bottom row: Pose results. The algorithm is able to deal with
a cluttered and changing background.

however, it is no longer necessary to model several views. iglaver, the object model
can perfectly t the data, while in 2-D approaches there remia discrepancies if the
current view does not coincide perfectly with one of the moted views.

In Fig. 13 we show the robustness of the method in the case offenging background.
One can see that the estimated pose of the teabox is not disttad by any of the objects
moved in the background, though the CDs even re ect the tealxosurface. Later on in
the sequence, also the teabox itself is moved, which showsattkhe method is not tuned
for static objects.

In the experiment shown in Fig. 14, we tested the in uence ofrtifacts like re ections,
shadows, and noise. The motion of the object causes partyaievere re ections on the
metallic surface of the teabox. Moreover, the teabox throwa shadow as it is tilted.
Additionally, Gaussian noise with standard deviation 30 haibeen added to the sequence.
Nevertheless, the results remain stable. Also the slight dasion due to the ngers does
not harm the pose estimation. The presence of noise in thisgsence clearly rules out
methods that are based on background subtraction. Also sirgthresholding methods
for contour extraction would fail due to the cluttered backgound and the re ections.
Fig. 15 compares the results obtained with and without the figested con dence mea-
sure, respectively. On the rst glance, the improvement mayot look extraordinary,
yet the con dence measure prevents the result from being datorated by the shadow
and the occluding ngers. With a homogeneous weighting, theorrect contour points
have not enough weight to ensure the correct pose estimate.

In the experiment depicted in Fig. 16, the monocular cameraas been extended to a
stereo system. In this case, another signi cant advantagéd asing 3-D shape knowledge
becomes apparent. In contrast to 2-D approaches, our methadn fuse the information
from two images. If the information in one image is not relidle, e.g due to occlusions,
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Figure 14: Top row: Initialization at the rst frame. Contour at frames 49, 50, and
116 of the sequenceBottom row: Pose results at frames 0, 49, 50, and 116. The
teabox is moved, causing partially severe re ections on tHeox. Furthermore, Gaussian
noise with standard deviation 30 has been added.

Figure 15: From left to right:  (a) Frame 13. (b) Pose estimation result without the
proposed con dence measure. (c) Result when exploiting tlbken dence. (d) Con dence
along the contour. Dark values represent a high con dence.

the information from the other image can still determine thepose. Even if there are
occlusions in both images, the combined information from bo images can be still
su cient for a reliable pose estimation. The object model wth the correct pose, on the
other hand, constrains the contour and keeps it from breakinaway.

In the sequel of this stereo sequence, the teabox is moved. orwurther frames are
depicted in Fig. 17. Again there appear re ections on the stace of the box, and there
are further partial occlusions due to the hand.

In order to demonstrate that the approach is not restricted ¢ a certain type of object,
Fig. 18 shows an experiment with a teapot model. This objecs inon-convex and even
contains a hole. Dealing with such a kind of object, it is partularly bene cial to
represent the contour by means of a level set function. In tHevel set framework, the
more complex topology does not change anything. Thus, thegien encircled by the
handle of the teapot can correctly be assigned to the backgmd region. The teapot
immediately rules out line-based methods for this task. Atsmethods based on feature
matching may have di culties due to the homogeneous surfacef the object. Further
note the bad initialization. A decoupled concatenation oflie segmentation technique
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Figure 16: Top left: Frame 97 from a stereo sequence with 400 frameBop right:
Tracking result. In both views the object is partially occluled but the pose can be
reconstructed thanks to the 3-D shape knowledgeBottom left:  The extracted con-
tour is kept close to object. Bottom right:  Here, the contour has been reinitialized
at this frame with the correct contour, but the shape knowlede has been neglected.
Consequently, the contour can break away.

Figure 17: Contour and pose results at frame 190 and 212 foretlstereo sequence from
Fig. 16.

and the pose estimation method cannot succeed in nding theght contour and pose.
Only the mutual improvement of both the contour and the pose leows for a good result
in the steady state.

Finally, Fig. 19 depicts a sequence where object and camera atatic to allow a quanti-
tative error measurement. The two diagrams show the trandianal and angular errors
along the three axes, respectively. Despite the change ofetlighting conditions and
partial occlusions, the error has a standard deviation of $8 than 5mm and 3.5 de-
gree. The main rotational errors occur for rotations arounthe x-axis of the calibrated
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Figure 18: Top row: Stereo image with a teapot. The initialization is quite far
away from the object. Center row: Result in the steady state. The coupled contour
extraction and pose estimation move the object prior into ta right pose. Bottom row:
Contour and pose with a simple concatenation of segmentaticand pose estimation,
i.e., only one iteration. The contour is restricted to the iitial, bad pose and cannot
fully capture the object. Consequently, the pose stays vermlose to the initialization.

system. This is due to the fact that such a rotation causes siher changes of the
silhouette than rotations around the other axes. Thereforethis degree of freedom is
more sensitive to inaccuracies or errors in the extracted mour. The x-axis is located

horizontally along the teapot, crossing the center of the #pot, and pointing from the

handle to the spout.

6 Conclusion

In this work, variational and statistical methodologies hae been combined with geomet-
ric technigues based on Cli ord algebras. We introduced a rntteod that integrates 3-D
shape knowledge into a variational model for level set basgdage segmentation. While
the utilization of 2-D shape knowledge has been investigaténtensively in recent time,
the presented approach takes the three-dimensional natuoé the world into account.
The method relies on a powerful image-driven segmentationodel on one side, and
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Figure 19: Top rows: Pose results at frame 30, 55, 130 and 200 for a static stereo
sequence with illumination changes and partial occlusior{teft and right view). Bot-
tom left: Translational errors along the three coordinate axes in ntiflneter. Bottom
right: Rotational errors in & degree.

an elaborated technique for contour based 2D-3D pose estitia on the other side.
The combination of both techniques improves the quality ofantour extraction and,
consequently, also the robustness of pose estimation tha&lies on the contour. This al-
lows for the tracking of three-dimensional objects in clutéred scenes with inconvenient
illumination e ects and partial occlusions. The strategy b model the segmentation in
the image plane, whereas the shape model is given in threeadnsional space, has the
advantage that the image-driven part can operate on its natal domain as provided by
the camera, while the 3-D object model o ers the full bandwith of perspective views.
Moreover, in contrast to 2-D techniques, the object is givea location in space.
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